
Abstract- High intracellular calcium conditions cause a
calcium-activated transient inward current ( Iti ) that can
provoke oscillations in membrane potential called delayed
afterdepolarizations ( DAD ). The current Iti comprises of the
sodium-calcium exchange current ( INaCa ) and the calcium-
activated chloride current ( ICl-Ca ). Lindblad, Murphey, Clark
and Giles developed a mathematical model ( LMCG model ) of
the rabbit atrial AP. In this study, a modified AP LMCG model
that includes ICl-Ca is used to evaluate the contribution of ICl-Ca to
develope DADs. Our results suggest that although INaCa is the
main component of Iti ( 65% ), ICl-Ca may play a significant role
in DAD generation. Even more, the ICl-Ca blockade could inhibit
the DAD propagation and trigger activity associated to high
[Ca2+]i condition, in atrial tissue.
Keywords -  ICl,Ca, chloride current, DAD, modelling

I. INTRODUCTION

Delayed afterdepolarizations ( DADs ) are oscillations in
membrane potential ocurring after completion of the action
potential (AP). DADs are an important mechanism for
cardiac arrhythmias [1, 2]. They usually occur under
conditions in which [Ca2+]i appears to be high. The
mechanism underlying DAD is a transient inward current
( Iti ) activated by spontaneous Ca2+ release from
sarcoplasmic reticulum.

Although the ionic nature of Iti is still subject to debate,
recent experiments in ventricular and purkinje myocytes
indicate that Iti is composed by an electrogenic
sodium-calcium exchange INaCa and a calcium-activated
chloride current ICl-Ca [1]. These studies suggest that the main
component of Iti is INaCa ( about 60÷80 % ) but the role of
ICl-Ca could be important.

ICl-Ca is also known as the second component ( Ito2 ) of a
transient outward current ( Ito ) that is present in
depolarization. ICl-Ca magnitude is lower than Ito1, a potasium
current, at normal conditions and slow rates. It is dependent
on [Ca2+]i , time-independent and it presents a voltage-
dependent outward rectification [4, 5, 6, 7]. Ito2 is responsible
for the maintenance of AP duration at high rates [5].

We developped a comprehensive model for the ICl-Ca , that
was presented in a previous comunication [8].

This model has been introduced in the Lindblad, Murphey,
Clark and Giles mathematical model ( LMCG model ) [3] of
the rabbit atrial myocyte that reproduces the AP in a variety
of conditions.

The present paper pretends to clarify the role of ICl-Ca in
DAD generation and in the induction of triggered activity.

II. METHODOLOGY

A set of mathematical equations describes the dependence
of ICl,Ca on intracellular Ca2+, as well as on ionic concentrations.
The current through Cl-Ca channels is described as a product of
three terms: first term is expresed using the Goldmann-
Hodgkin-Katz (GHK) equation, the second term ( fCa ) is the
dependence on calcium and follows a Hill-type equation, and
the last term ( Rc ) is the rectification exhibited by Cl-Ca
channels, which is due to a voltage-dependent blockade caused
by intracellular cations ( Table 1 ) .

TABLE I
CALCIUM-DEPENDENT CHLORIDE CURRENT EQUATIONS

The mathematical description of ICl,Ca was included into the
atrial AP LMCG model. Software programs were written in
ACSL language using Gear stiff algorithm to solve the
nonlinear system of differential equations that results from
the AP myocyte model. For studying propagation, the tissue
is modeled as a one-dimensional 1-D segment ( 500 cells ).

Figure 1. Effect of varying ICl-Ca conductance  (10, 25, 50, 75, 100, 150,
200, 250, 300 % of nominal ) on model action potential morphology

during stimulation at 2 Hz.
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The 1-D model was programmed in C++ language, the
cable equation was solved using a central difference scheme
in space and Crank-Nicholson method in time. Both, isolated
myocyte and multicellular models, were implemented in a PC
machine.

Protocol stimulation follows the nominal values of LMCG
model for stimulation current (Ist) at 2 Hz rate [3].

III. RESULTS

Figure 1 shows the effect of varying the magnitude of the
nominal ICl,Ca conductance on action potential. Blockade of
ICl,Ca increase the action potential duration.

Figure 2 shows the time course of different membrane
currents during the AP. Under normal conditions, ICl-Ca  is
present mainly in depolarization.

Figure 3 shows the parameters fCa and Rc used to model
ICl-Ca. In order to compare the model ICl-Ca I-V plots with
experimental data [5, 6], a train of voltage steps of 100 ms
from – 70 to V was simulated at 0.1, 1 and 2 Hz. Plot C
represents the normalized model results of peak current vs.
experimental normalized data.

In order to study Iti we considered DAD-generating
conditions as intracellular calcium-overload. Calcium-
overload is induced by an initial [Ca2+]o higher than nominal.

In figures 4, 5 and 6, a train of 10 AP was stimulated but
only the last AP was represented.

Figure 4 shows the membrane potencial at different initial
[Ca2+]o ( A: 4, B: 5, C: 6 and D:7 mM/l) in control simulation
(a) and when ICl-Ca (b), INaCa (c) and both (d) are forced to
zero at 4.8 s.

It can be observed that at higher calcium-overload
conditions the delay between AP and DAD is lower (t4< t1).

For [Ca2+]o of 4 and 5 mM/l, the inhibition of ICl-Ca has not
significant effect on DAD amplitude ( differences are below
than 11 % ). However, for [Ca2+]o of 6 mM/l the inhibition of
ICl-Ca provokes a reduction of 58 % in DAD amplitude.

Figure 5 shows the case of an initial [Ca2+]o= 6 mM/l. In
plot A can be observed the effect of ICl-Ca blockade at 5.2 s

Figure 3. Parameters used to model calcium-activated chloride current ( ICl-Ca ). A: calcium-dependent open channels fraction. B: voltage-dependent
blockade. C: I-V normalized relation. Data points represent experimental data.

Figure 2. Currents and AP during stimulacion at 2Hz
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(b) vs. control (a) on DAD. In plot B can be observed that the
contribution on Iti of ICl-Ca and INaCa is 35 % and 65 %
respectivelly.

To study DAD propagation we use the 1-D model in a
segment of 500 cells.

Figure 6 shows the membrane potential in the cell number
1, 125, 250, 375 and 500. As it can be observed, in plot A the
DAD that appears in  cell #1 is propagated like an AP in the cell
#500. However, when IClCa is blocked, plot B, the oscillation in
the membrane potential of cell #1 is not propagated like an AP
in cell #500.

IV. DISCUSSION

The main goal of the present study is to find out the role of
IClCa as a component of Iti on DAD formation and propagation
as AP in the atrial tissue.

A mathematical model of the IClCa has been developed.
Whenever possible, we use data directly measured on rabbit
atrial cells to derive model parameters [5, 7]. When rabbit atrial
data were not available to completely caracterize the current we
use reliable data of dog and rabbit ventricular cells [4, 6].

The ionic nature of Iti is still subject to debate. Several
authors propose two ionic currents to contribute to Iti:
electrogenic INaCa and IClCa , but it is not clear in which
percentage.

Recent data from Zygmunt el al. [1] indicate that INaCa

component is the main responsible, representing about 60% of
the total calcium-activated current at the resting potentials ( Iti ).
Other authors like Verker et al. [2] give values near to 80%.

Our results show that ICl-Ca takes values near to 35%
and INa-Ca takes values near to 65% of the total calcium-
activated current at the resting potentials ( Iti ).

Figure 5. DAD after 10 PA @ 2 Hz, [Ca2+]o = 6mM/l, CTRL and IClCa=0. A: DAD plot. B: Iti CTRL composition %.

Figure 4. A secuence of 10 PA at 2 Hz was made. Calcium-overload is provoked by increasing [Ca+2]o to 4, 5, 6 and 7 mM/l ( nominal value is 2.5 mM/l ). At
4.8 s we force to zero IClCa, INaCa and both ( traces b, c, d ) comparing them with control ( trace a ). The results in plot A and B show similar magnitude in

traces a and b. The plot D shows a great attenuation of DAD traces. Only plot C seems to have a relevant difference between DAD amplitudes (traces a, b ).
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V. CONCLUSION

Our results suggest that ICl-Ca could play an important role in
DAD generation mechanisms. The blockade of ICl-Ca can reduce
DAD amplitude to prevent DADs to reach the trigger threshold
of action potentials.
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Figure 6. A secuence of 10 PA at 2 Hz in a 1-D segment of 500 cells was made. Calcium-overload is provoked increasing [Ca+2]o to 7 mM/l. The plot
A show the tissue propagation of the DAD. In the plot B we force to zero IClCa at t>4.6 s and AP < 10 % of maximum amplitude; in this case, DAD is
lower than the subthreshold level for triggered AP.
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